ЕГЭ-2016 ФИПИ, задача 18 (варианты № 31 и № 32)

ЕГЭ-2016 ФИПИ, задача 18 (вариант № 31)

 Найдите все значения параметра а, при каждом из которых уравнение

((а -1)х2 + 3х)2-2((а-1)х2 + 3х) + 1-а2 = 0

имеет ровно два решения.

Решение. Применив формулу квадрата разности двух выражений, преобразуем данное выражение к виду:

((а-1)х2 + 3х-1)22 = 0. Применим формулу разности квадратов двух выражений и разложим левую часть на множители:

((а-1)х2 + 3х-1-а)((а-1)х2 + 3х-1 + а) = 0. Произведение равно нулю, если один из множителей равен нулю, а остальные при этом значении не теряют смысла.

(а-1)х2 + 3х-1-а = 0 или (а-1)х2 + 3х-1 + а = 0.

1) (а-1)х2 + 3х-1-а = 0. Найдём дискриминант.

D = 32-4 (a-1) (-1-a) = 9 + 4 (a-1) (1 + a) = 9 + 4 (a2-1) = 9 + 4a2-4 = 5 + 4a2 > 0 при любом значении а, следовательно, уравнение

(а-1)х2 + 3х-1-а = 0 имеет два действительных корня.

2) (а-1)х2 + 3х-1 + а = 0. Найдём дискриминант.

D = 32-4 (a-1) (-1 + a) = 9 + 4 (a-1)2 = 9-4 (a2-2а + 1) = 9-4a2 + 8а-4 = -4а2 + 8а + 5. Если и этот дискриминант будет больше нуля, то мы получим к уже имеющимся двум действительным корням ещё два. Но если этот дискриминант будет меньше нуля, то новых корней не будет. Найдём значения а, при которых дискриминант был меньше нуля. Решим неравенство:

-4а2 + 8а + 5 < 0   →    4а2-8а-5 > 0. Решаем уравнение 4а2-8а-5 = 0. Второй коэффициент – чётный, поэтому, находим

D1 = — ac = 42- 4 (-5) = 16 + 20 = 36 = 62 > 0; два действительных корня.

2018-03-15_112831

 

 

Неравенство 4а2-8а-5 > 0 будет верным при а ∈ (-∞ ; а1)  (a2; +∞ ), т.е. при

а ∈ (-∞ ; -0,5)  (2,5; +∞ ). Итак, при этом условии уравнение (а-1)х2 + 3х-1 + а = 0 не будет иметь действительных корней, и данное в условии уравнение будет иметь ровно два решения.

Ответ: а∈ (- ∞; -0,5)  (2,5; +∞ ).

 

ЕГЭ-2016 ФИПИ, задача 18 (вариант № 32)

Найдите все значения параметра а, при каждом из которых множество решений неравенства

2018-03-15_113835

 

 

Решение. Преобразуем данное неравенство к виду:

2018-03-15_113858

 

 

Приведём левую часть к общему знаменателю.

2018-03-15_113913

 

 

Так как -1 ≤ cos4x ≤ 1, то знаменатель дроби при любом значении а положителен, поэтому равенство будет верным, если числитель окажется меньшим нуля. Решаем неравенство:

a-(a2-2a)cos2x + 2-3 + cos4x-a2 < 0. Применим формулу: 1 + cos2α = 2cos2α, тогда cos4x = 2cos22х-1. Получаем неравенство:

a-(a2-2a)cos2x + 2-3 + 2cos22х-1-a2 < 0;

2cos22x-(a2-2a)cos2x-(а2-а + 2) < 0. Это квадратное уравнение относительно переменной cos2x. Сделаем замену: cos2x = z. Получаем:

2z2-(a2-2a)z-(а2-а + 2) < 0. ( * )

2018-03-15_113957

 

 

Проиллюстрируем последнее утверждение – рассмотрим график функции  y = cos2x на промежутке

2018-03-15_114031

 

 

2018-03-15_114048

 

 

 

 

 

Неравенство ( * ) должно выполняться и при z =-1 и при z = 1. Искомыми будут являться те значения параметра а, при которых неравенство ( * ) будет выполнено.

1) z =-1.

2 (-1)2-(a2-2a) (-1)-(а2 — а + 2) < 0;

2 + а2-2а-а2 + а-2 < 0   →   -а < 0     →    а > 0.

2) z = 1.

2 12-(a2-2a) 1-(а2-а + 2) < 0;

2-а2 + 2а-а2 + а-2 < 0   →   -2а2 + 3a < 0     →    2а2-3a  > 0    →   a(2a-3) > 0.

2018-03-15_114127

 

 

 

Общее решение: а ∈ (1,5; + ∞).  Ответ: а > 1,5.

Навигация

Предыдущая статья: ←

Остались вопросы? Меня зовут Татьяна Яковлевна Андрющенко. Хотите записаться на консультацию? Звоните мне по Skype: tayak_tz или пишите по адресу: at@mathematics-repetition.com
Сайт размещается на хостинге Спринтхост