Даны векторы a(-1; 3), b(4; 1) и c(2; c_0). Найдите c_0, если (a + b)c = 0

Даны векторы a(-1; 3), b(4; 1) и c(2; c_0). Найдите c_0, если (a + b)c = 0 ЕГЭ

Задача. Даны векторы \vec{a}(-1; 3), \vec{b}(4; 1) и \vec{c}(2; c_0). Найдите c_0, если (\vec{a} + \vec{b}) \cdot \vec{c} = 0.

Решение

Чтобы найти c_0, выполним следующие шаги:

1. Сложим векторы \vec{a} и \vec{b} по компонентам:

\vec{a} + \vec{b} = (-1 + 4, 3 + 1) = (3, 4)

2. Вектор \vec{c} задан как (2, c_0).

3. Теперь найдём скалярное произведение векторов \vec{a} + \vec{b} и \vec{c}:

(\vec{a} + \vec{b}) \cdot \vec{c} = (3 \cdot 2) + (4 \cdot c_0)

4. По условию задачи, скалярное произведение равно нулю:

6 + 4c_0 = 0

5. Решаем полученное уравнение относительно c_0:

\displaystyle 4c_0 = -6 \\[5mm] c_0 = -\frac{6}{4} \\[5mm] c_0 = -\frac{3}{2}

Таким образом, \displaystyle c_0 = -\frac{3}{2}=-1,5.

Ответ: -1,5.

Ольга Викторовна Андрющенко

Андрющенко Ольга Викторовна - математик и физик, к.ф.-м.н., доцент.

Разбор и решение заданий из ОГЭ и ЕГЭ
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии