На окружности отмечены точки A и B так, что меньшая дуга AB равна 68°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 68°. ОГЭ

Задача. На окружности отмечены точки A и B так, что меньшая дуга AB равна 68°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Решение

Угол между касательной и хордой, выходящими из одной точки, равен половине дуги, заключенной между этими линиями. Таким образом, угол ABC равен половине меньшей дуги AB.

Меньшая дуга AB равна 68°, следовательно:

\displaystyle \angle ABC = \frac{1}{2} \cdot 68° = 34°

Ответ: 34.

Ольга Викторовна Андрющенко

Андрющенко Ольга Викторовна - математик и физик, к.ф.-м.н., доцент.

Разбор и решение заданий из ОГЭ и ЕГЭ
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии